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The one-dimensional finite deformations of the elastoplastic material of a thin-walled tube accompanying the loading of its external 
cylindrical surface are investigated. It is observed that, under conditions of total unloading when the external pressure is removed, 
the onset of a repeated plastic flow is possible, which changes the form of the distribution of the residual stresses considerably. 
The effect of the adaptability of an elastoplastic body with a cylindrical surface to repeated loading is pointed out. 0 2003 Elsevier 
Science Ltd. All rights reserved. 

The theory of finite elastoplastic deformation, which has been previously constructed [l-3], has been 
used to investigate the irreversible deformation of the material of a thin-walled tube by a pressure on 
its external surface. This mathematical model differs from earlier models [4-71 in that, when the overall 
deformations are separated into reversible (elastic) and irreversible (plastic) components, these 
components are determined not by algebraic relations but by differential relations, that is, transport 
equations [18] for the elastic and plastic deformation tensors are obtained. In particular, the result of 
unloading is independent of the path of the process in stress space [l, 21 in this method. This fact has 
been used [9] to calculate residual stresses by solving problem of the equilibrium of a body when there 
are no external actions but with accumulated reversible deformations. 

It is noted below that the fact that the result of the unloading process is independent of its path in 
stress space, which is a property of the model used, still does not guarantee that the result of the un- 
loading can be considered as the resultant equilibrium state. When the level of accumulated, irreversible 
deformations exceeds a certain critical value, their interdependence with the reversible deformations 
leads to the occurrence of a repeated plastic flow accompanying the continuing overall unloading of 
the body. This effect necessitates a change in the formulation of the corresponding boundary-value 
problem such that a subsequent unloading deformation with a developing plastic domain has to be 
considered as a process in time. This change in the formulation of the problem is the subject of this 
paper. The effect of residual stresses on the elastoplastic deformation process accompanying repeated 
loading is also considered. 

1. INITIAL MODEL RELATIONS 

The model of finite elastoplastic deformations used is described in detail in [2,3], and we shall therefore 
only discuss the main relations which are subsequently required. Only total deformations can be directly 
measured; their separation into reversible (elastic) and irreversible (plastic) components, however 
reasonable the grounds for such a separation would appear here, is in essence associated with the 
arbitrariness of the investigator constructing the model. The following considerations serve as a basis 
for the separating the overall Almansi deformations d, into reversible eij and irreversiblepV components 
in existing theories: during unloading, the rate of plastic deformations E$ vanishes and the change in 
the components of the plastic deformation tensor Pii is only associated with rigid rotations PU(t) = 
Z,/J’h(to)Zmj, where z& are the components of an orthogonal tensor, and the instant if time t = to can 
be associated with the instant at which the unloading process starts. It is well known [l] that such a 
change in the components& is equivalent to the differential relation 
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dZmk 

dt = rikPkj - Pikrkj, rik = -rki = -z,,.- 
dt 

When account is taken of this, the reversible and irreversible deformations are defined by the transport 
equations 

dpijldt = $ - $Pkj - Pik$j + rikPkj - Pikrkj 

de,ldt = Eij - Ez - ~(eikvk, j + Vk, iekj - ‘ikekj + eikrkj - Efkekj - EikE%) 
(1.2) 

In (1.2) Euler’s method of specifying the motion of a medium ai = ai(xr, x2, xg, t) is adopted and the 
relations 

au’+v.,. vi = at J bJ’ Eij = ;(vi,j+vj,i) 

ui(x19 x21 x3, t, = Xi-ai(xlv X2r x3, t, 

‘ i j = Wij + A-‘{ B*(&#kj - eik&kj> + B(&ikek,,,emj - eikek,,,&,,,j) + 

+ eikEkmemsesj - eikekmEmsesj 1 

A = 8-8L,+3L;-L,-;L;+;L,, B = 2-L, 

L, = eii, L2 = eijeji, L3 = eijejkeki, wij = ‘/2 (vi, j - vj, i) 

According to Eqs (1.2) the separation of the Almansi deformation tensor d, into its reversible 
component eii and irreversible component pii satisfies the relation 

(1.3) 

The differential relations (1.2) are substantiated [3,8] by the systematic use of the formalism of non- 
equilibrium thermodynamics. 

As previously [3], we shall also adopt the simplifying hypothesis that the free energy F is independent 
of the irreversible deformations; the Murnaghan formula 

will then be a consequence of the law of conservation of energy. 
When there are no irreversible deformations, the Murnaghan formula takes the form 

Oij = - p6ij + adi, -=(a .-2d,j) ml 

In relations (1.4) and (1.Q P is the additional hydrostatic pressure which arises as a consequence of 
the assumed condition that the medium is incompressible. We assume the elastoplastic medium to be 
isotropic and, when W = W(LI, L2), we use the relation 

F(dij) = pO’W(L,, ~52) 

W = (a-p)L, +aL,+ bL:-XL,L,-OLf, L, = dii, L2 = diidji 
(1.6) 

The quantities p, a, b, x, 8 are assumed to be constants of the medium, and p. is the density of the 
medium in the undeformed state. When b = x = 8 = 0, the well-known Moony potential follows from 
relations (1.6) and if also a = 0, then we obtain Treloar’s elastic potential. When there are irreversible 
deformations in the medium, it is necessary to replace the invariants Lr and L2 with the invariants of 
the reversible deformation tensor eV 

1, 
1 = t?ii - 2eijeji, I* = eijeji - eisesjeji + beiseskekjej, 
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This choice of invariants ensures that we can take the limit in calculations of the stresses using formulae 
(1.4) and (1.5) when the irreversible deformationpii tend to zero. 

We will assume that the process of plastic flow is ideal and that the accumulation of irreversible 
deformations occurs when [lo] 

f( Oij) = k( dfldOij)Eij > 0 (1.7) 

The conditions of the Mises maximum principle 

( bij - CT;)&; > 0 (1.8) 

are also adopted, where o$ is any stressed state which is permitted by the given loading function 
f(of) c k. In this case, the associated law of plastic flow 

E; = hafiaoij, h = A(E;)>o (l-9) 
follows. 

In the calculations, the condition of plasticity of Tresca’s maximum shear stress was used as the loading 
surfacef(o& = k. 

2. FORMULATION OF THE PROBLEM. INITIAL ELASTIC 
EQUILIBRIUM 

An infinitely long cylinder of external radius R,,, made of an elastoplastic material is considered in which 
there is a cylindrical cavity of radius ro. The cylindrical surfaces r = R. and r = ro(ro e Ro) correspond 
to the free state of such a thin-walled tube. The external cylindrical surface Y = R is loaded while the 
internal surface Y = s remains load-free. An elastic equilibrium is maintained until the component of 
the stress tensor o, in the cylindrical system of coordinates (r, 8, z), which is subsequently used, exceeds 
its threshold value PO at the boundary r = R. When 

o,,(R) = -p, (2.1) 

the stressed state at the internal surface of the tube r = so reaches the loading surface for the first time 

that is, the condition 

is satisfied. 

CT,,- CT,, = 2k 

o,,(s,) = -2k 

(2.2) 

(2.3) 

Plastic flow of the material begins from this state of elastic equilibrium and it is therefore necessary 
to calculate the parameters of this state for the subsequent analysis. 

The condition of incompressibility of the material leads, in the case being considered, to an equation 
in the sole non-zero component of the displacement vector u, = U(T) 

(l-ul)(l---‘u) = I 

(the prime denotes a partial derivative with respect to r). 
The function 

u = r-(r2+tp(t))‘R, (p(t) = &R2(t) = r&v2(r) (2.4) 

is the solution of this equation. 
Here, R(t) and s(t) are the actual values of the radii of the external and internal cylindrical surfaces 

respectively. Under equilibrium conditions q(t) = const, but the time-dependence is important during 
the subsequent plastic flow. 

For the components of the Almansi finite deformation tensor we find 

12 1 d,, = u’--u’ = 
2 

$1-n-l), d,, = r-‘~+~~~ = ;(I -q) 

(2.5) 
11= 1 + (R; - R2)f2 
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Substituting expression (2.3) into relations (1.4) and (1.6) we can calculate the stresses in the medium 
apart from the unknown function p(r) 

(3 = rr -P(r) + 5(11), (Tee = -p(r) + 5($, 

p(r) = -P+awlaL,, c(q) = a,(l-r--3)+a2(1-n-2)+ 

+a,(l-q-‘)+a4(q-1)+a5(q2-1) 

%i + 01, a1 = 4 a2 = a+b-$3X+50) 

a3 = p-2a-3b+i(X+38), a4 = b-$X+56), a5 = :(x+38) 

The functionp(r) is found by integrating the equilibrium equation 

(2.6) 

b:,+(Q,,-cree)r 
-1 

= 0 

with the boundary condition o,.,.(sa) = 0. We obtain 

P(r) = S(T) + 5<4 rl) 

<(x,q) = a,ln(xq-‘)+a7(x-q)+ag((x-l)*-(q--l)*)+ 

+a~((x-1)3-(~-1)3)+a,~(~~1-x~‘)+a,,((l-~~’)2-(1-~~‘)2) 

a6 = ; p-a-b+&x+38) 
> 

) a7 = ip, a8 = $ a+b+$(X-38) 
( > 

al0 = i a+b-i(X+38) 
> 

2 -2 , a11 = x = q(so) = rosa 

(2.7) 

(2.8) 

Relations (2.5), (2.6) and (2.8) solve the problem, apart from a single unknown quantity so. The 
boundary condition (2.1) enables one to associate this parameter with the value of the loading pressure 
PO, and condition (2.3) enables us to calculate the value of PO or so at which the condition for irreversible 
deformation is satisfied. This last condition takes the form of an algebraic equation in x 

~~(~-x~‘)+~~(~*--x~*)+a,(x~-n-~) = 2k 

C, = p-2a-26+$(7X+ lse), c2 
(2.9) 

= a+b-2X-38 

Solving Eq. (2.9), we find the value of x and, consequently, PO and so such that the Tresca plasticity 
condition is satisfied on the internal cylindrical surface Y = so. 
problem can then be considered as having been completed. 

The solution of the subsidiary elastic 

3. PLASTIC FLOW 

We will now consider yet another subsidiary problem within the framework of which it is convenient 
to write the majority of the relations required in the subsequent description. We will assume that, at 
the instant of time t = 0, the boundary of the cylindrical cavity occupies the position r = so, which has 
been calculated using Eq. (2.9). This means that the stress o, on the external boundary of the body 
corresponds to the value PO of the external pressure. Suppose the external pressure subsequently 
increases 

%(,=R(t) = -PO-g(t), g(t)>07 g(O) = 0 P-1) 

Plastic deformation occurs in the domain s(t) G r G rI(t) at any successive instant of time and 
everywhere in this domain o, - oee = UC. The function rI(t) specifies the motion of the boundary of 
the zone plastic flow. The equilibrium equation now has to be replaced by the equation of motion of 
the medium 
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6, + to,,- qle)fl = -$o(Q 
1.2 -3 r-’ + -cp r 2 ) 

(the dot denotes a derivative with respect to t). 
Relations (2.2) have been used here to calculate of acceleration component. Equation (3.2) has to 

be integrated separately in the elastic and plastic domains taking account of boundary condition (3.1) 
and the condition that o, is equal to zero when Y = s(t). In this manner we find that, in the domain 
s(t) c r s q(t) 

0 rr = 2kln(s(t)r-‘) + S(cp, s(t), r) 

S(cp, s(t), r) = ;p,[gln(S(t)r-‘) + $$(r-2 -s-2(t))] 

In the domain of elastic deformation rt(t) G r =S R(t), we obtain 

c,, = cd% 1 + cp(~)R-*w) - p, -g(t) + step, R(t), r) (3.4) 

At the boundary of the plastic domain r = ri(t), the values of o,, which are defined by expressions 
(3.3) and (3.4) are necessarily identical. Moreover, the stress o,, calculated using formula (3.4), and 
bee, which is given by a similar relation, are related by the plasticity condition (2.2). In this way, rt(t) is 
expressed in terms of the function q(t), and the ordinary differential equation 

CAY, 1 + cptW2(0) - kln[tri- cptt))ty - l)cp-‘(Ol- 

-PO-gtt)+S cp,(R~-cp(t))“2(r~-(p(t))“2 ( > = 0 (3.5) 

Y = %=r,(,) = r;2(t)cp(t) + 1 

is obtained for this function 
We will assume the following initial conditions 

(p(0) = ro’- s; = &x- 1)x-‘, @p(O) = 0 (3.6) 

for differential equation (3.5). 
Equation (3.5) with initial conditions (3.6) can be solved numerically and the stresses in the medium 

can then be calculated using formulae (3.3) and (3.4) and similar relations for oBe, which are not written 
out here. The calculation of the reversible and irreversible deformations in the domain s(t) s r c r,(t), 
which are required in the subsequent treatment, turn out to be an independent problem in this case. 
When calculating them, in has to be taken into account that the reversible deformations at each point 
change up to the time when the boundary of the plastic domain reaches this point and, subsequently, 
on account of the ideal nature of the plastic flow, they remain unchanged until the end of the loading. 
The boundary of the plastic domain changes during the deformation process so that r = so when 
p = Poandr = riwhenp = PI (the final state). If r is the coordinate of a point at the final instant of 
deformation, ra is its coordinate in the free state and r, is the coordinate of the same point at the instant 
when plastic flow begins in its neighbourhood, then 

2112 2 
r = tY,+$-y,) , TtO = Y, + t-f 

Y, = t-F0 - r-f = ri-sf = Ri-Rf (3.7) 

y, = rFo- r2 = ri-st = R;-R; 

Here yl and yt are the values of the function cp(l) at the instant the deformation process ceases and 
at the current instant of time (when r = rl) respectively. The functions yl and yl are determined from 
the solution of Eq. (3.5) with the conditions (3.6). Relations (3.7) associate the initial (material or 
Lagrangian) coordinate of a point rto with its spatial (Eulerian) coordinate r in terms of the spatial 
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coordinate of the same particle r, at the instant of the plastic boundary approaches it. If we put 
g(t) = 3Lt in condition (3.1) we obtain 

y, = q(P, -P,)h-‘, yr = cp(P,-P,)h-‘; P, < P,I P 1 

Using the condition for the plastic flow process to be ideal, we find the reversible deformations when 
q(t) s r =G ?-1(t) 

e - 1 -x-y rr - ege = 1 -x1’*; x = 1 +yt(r2+y1 -7,)-l (3.8) 

The irreversible deformations are calculated from (1.3) using the known reversible and total 
deformations 

P rr = &(r* + y,)-’ +x -’ - l), pee = $-1(x- 1 -y*r*) (3.9) 

If the final value of the specified external pressure Pi does not change later, the body with the 
accumulated plastic deformations (3.9) will come into equilibrium. 

4. LOADING OF THE MEDIUM. RESIDUAL STRESSES 

We unload the body by changing the external pressure to a certain value P, < PI. A threshold value 
for the loading pressure PI = PT exists such that, if PI c Pr, the value of P, can be taken as being equal 
to zero and the final unloaded state can be considered as the equilibrium state when the values of IS, 
and r = Rp are zero (the subscriptp corresponds to the unloaded state). This is associated with the fact 
that, in the model of finite elastoplastic deformations which is being used, this state is independent of 
the path of the unloading process in stress space. 

When PI > PT, the condition for the final state to be independent of the unloading process cannot 
be made use of on account of the fact that only o,(R(t)) remains equal P* and the stressed state is 
defined by the equality o,&,) = UC. Note that oe8 is now a stretching stress. This state turns out to be 
the initial state for the subsequent plastic flow process associated with a further reduction in the external 
load. The overall deformations in the medium in this state are calculated using the known displacement 
field (2.2) where the function cp(t) has to be replaced by its value yb = d - $. If the material boundary 
of the plastic domain does not change during unloading, the spatial coordinate of the boundary when 
p = P2 is calculated using the formula & = 4 + yP - yl. In the domain TIP(t) s r G Rp, where there 
are no irreversible deformations, the stresses are calculated using the known overall deformations from 
relations (1.5) and (1.6). The unknown function of the additional hydrostatic pressure, which appears 
in (1.5) is found by integrating the equilibrium equation subject to the condition o,(R,) = -P2. As a 
result, we find 

0~3 = a,,-a,(~3-~-3)-c2(112---2)-Cl(rl-11-’) 

11 = 1 +y,r-*, q, = l+ q,R;* 

(4.1) 

In the domain with the accumulated irreversible deformations, the stresses are calculated using the 
elastic deformations which have been found. The latter are calculated in terms of the known total plastic 
deformations, which do not change during the unloading process. The unknown function P in expression 
(1.4) is found by integrating the equilibrium equation with the condition o&,) = 0. Hence, the final 
relations 

CJ rr = T(Yl,YZ) 

bee = o,,-a,(~Z-~i~) -c2(~l-Yi2) -c1(Y2 -$I 

T(Y,, y2) = c3W(y2 - l)(y, - l)-‘) + dh -y2) + 

+c51n((y2- l)(y, - l)-‘y&‘)+c6& -Yl*)+ 

+c,((y,-1)2-(Y,-l)2)+c,((y,-1)3-(Y*-l)3)+~~((l-Y;‘)2-(~-Y~1)2) (4.2) 
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Yl = 1 + (Yp-Y*)spZ, Y2 = 1 +(Yp-YlF2 

1 c3 = p,x+c*x * + ap3), CJ = -gcp + 2c,x2 + 3a,x3) 

cg = +c,x-’ + c*x-* + a,C3), c(j = +c,x-* + a,Y3) 

1 -3 
c7 = +c*x* + 3a,x3), cs = --a x3, 

:,I 
cg = -a,c 

4 

can be obtained for the stresses in the domain s,(t) G r C rl,,,. 
According to the condition which has been adopted, the stressed state of the medium, specified by 

relations (4.2) must satisfy the condition o&s,) = 2k. The algebraic equation 

a,(z3-z2-3)+~2(z2-z2-2)+~,(z-zZ-’) = -2k, z = xyf” (4.3) 

follows from this. 
The solution of this equation gives the magnitude of z and, consequently, the value of sP which 

corresponds to the onset of repeated plastic flow. This value is uniquely related to the value of P2 for 
the loading pressure; the latter is calculated from the condition for the stresses (4.1) and (4.2) to be 
equal on the boundary of the plastic domain I = rlP. 

It has already been noted that the calculated equilibrium state is the initial state for the subsequent 
process of the irreversibility of deformation in which 

%1,=R(,) = -P,+WO, h(0) = 0, h(t) >o 
(6,,-bee)ls(r)5r~r,(,) = -2k qr= s(,) = 0 (4.4) 

The equilibrium equation now has to be replaced by the equation of motion (3.2) with a new arbitrary 
function w(t). The motion of the boundary of the new plastic domain r = r2(t) is given by the relation 

r2 = b(w(t) - Y1))1’2(z - xl- 
l/2 

(4-Y 

By integrating the equations of motion in each of the three domains 

s(t) I r S r,(t), r,(t) 5 r I rl(t), r,(t) I r-5 R(t) 

subject to the conditions that the elastic deformations do not change in the first of these domains and 
that the plastic deformations do not change in the second, the stresses in each of the deformation 
domains are determined using boundary conditions (4.4). Here, we shall only write out the relation 
o, = om(r, t); the relations for oee(r, t) are completely analogous to it. 

In the domain s(t) G r c ri(t), we have 

0 rr = 2kln(rs-l(t)) + S(w, s(r), r) (4.6) 

In the domain r,(t) s r c R(t), where there are no irreversible deformations, the stresses o, are 
calculated using the first expression of (4.1) in which it is necessary to add the term 

RW, (Ri - yr)“*, r) -h(t) 

When integrating the equation of motion in the domain r*(t) c r c rl(t), where the irreversible 
deformations do not change, it is necessary to use the condition for the stresses to be equal when 
r = rl(t) (the change in rl with time is solely associated with the motion of the deforming medium). As 
a result, we find that, in the given domain 

CT rr = 7(~3, ~2) +Nt)--P2+ kz~,7)~)+S(w1 (Ri-v)“*, r) 

y3 = 1 + (w(t) -Yl)rT2(t), z1 = 1 + v(r)r;*(r) 
(4.7) 
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The condition for the stresses to be equal on the boundary of the domain of repeated plastic flow 
r = r2(t) leads to the following differential equation for the function y(t) 

T(yj, zx-‘) + Uzl, 7,) - kln(ri(ri -v(O)-‘) + h(t) - P2 + 

+S(w, (R&/)“*(r~-yfy) = 0 
(4.8) 

The initial conditions for these equations are 

v(O) = ri -SE, q(O) = 0 (4.9) 

Hence, the solution of the problem of the unloading of the medium has been reduced to the successive 
solution of differential equations (3.5) and (4.8) with conditions (3.6) and (4.9) respectively. The stresses 
and deformations in the body are determined using the functions g(t) and v(t) which have been found 
using this technique in accordance with the above relations. The same functions also determine the 
laws of motion of the boundaries of the plastic domains rl(t) and r*(t). It should be noted that the 
irreversible deformations in the domain r*(t) G r G rl(t), which occur parametrically in these equations, 
can only be given in the form of discrete numerical blocks for subsequent calculations. Their invariance 
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at each point is guaranteed but they must be recalculated on account of the change in the spatial 
coordinate of the same point during the deformation process. 

We will now present some typical results of calculations obtained using the following values of the 
constants 

a - = 0.9, b = 
P CL 

4, ; = 20, e = 80, k = 
CL P 

0.003, 5 = o.ooo4 

where the shear modulus p = 25 x 10’ Pa. The stresses o/p are shown in all the figures (the stresses 
o,.,& are shown by the solid curves and the stresses oe& are shown by the dashed curves) as a function 
of the value of r/R0 at different instants of deformation. The stress distribution at the final instant of 
active deformation when o,(R) = -PI is shown in Fig. l(a). Everywhere in the domain s1 < r < rl, the 
difference between the stresses a, - bee is the same and is equal to UC. The stress distribution at the 
instant of the onset of repeated plastic flow is illustrated in Fig. l(b). The stress crge in this state became 
a stretching stress and, on the boundary r = sp, it is equal to UC. The final residual stresses correspond 
to the relations represented graphically in Fig. l(c) o, - age = 2k everywhere in the domain s, s r s r2. 
The functions g(t) and h(t) were assumed to be linear in the calculations. 

5. REPEATED LOADING 

The initial state for repeated loading is the completely unloaded state when o&J = 0 and ov(R,J = 0. 
The residual stress distribution in this case is shown in Fig. l(c). Reversible deformation occurs when 
the external load is successively increased up to a certain value P3 > PO and, when or(R) = -P3, 
the stressed state on the surface r = Sk (the inner surface of the tube) again reaches the yield surface: 
os&) = -UC. This state is the initial state for the subsequent process of irreversible deformation and 
is calculated in the same way as in the preceding case, that is, the equilibrium equation is integrated 
in the three domains 

where the irreversible deformations, which are unchanged during the deformation process, are calculated 
differently. A typical stress distribution in this state of the body is shown in Fig. 2(a). When p > P3, 
there is an accumulation of irreversible deformations and it is therefore again necessary to treat this 
process in time. This leads, as earlier, to a system of equations consisting of several algebraic equations 



292 A. A. Burenin et al. 

and a single differential equation. All of them are obtained by methods which are exactly the same 
as those demonstrated earlier, so we shall therefore only discuss the qualitative results of the calculations. 

It has already been mentioned that the process of plastic flow commences when o,(R) = -P3, where 
PO < P3 < PI. When there is a further increase in the external pressure o,@) = -P3(1 + ht) with time, 
the zone of plastic flow occupies the domain Sk(t) < r < r3(t) where r3(t) is the boundary of the plastic 
domain which is moving through the medium. 

The stress distribution in the material at a certain instant of time is illustrated in Fig. 2(b). The 
following fact is of interest: when the boundary r3(t) reaches the surface r2, which corresponds to the 
final position of the boundary of the zone of plastic flow during the unloading of the medium, the loading 
pressure p(t) is found to be exactly equal to PI. The domain r-3 = r;, < r < rl at this instant of time 
instantaneously arrives at the plastic state (or - oee = 2k). Hence, the cycle is completed, that is, the 
medium arrives at the state which has been illustrated in Fig. l(a). 

If the external pressure is not increased any further and the body is again unloaded, then, as a result, 
we obtain the stressed state shown in Fig. 2(c). This is also typical of the changes in the radii of the 
boundary surfaces. We call this effect the adaptability of the medium to cyclic loading (we recall that 
all the calculations were carried out within the framework of the model of ideal plasticity). In order to 
increase the level of irreversible deformations or, what is the same thing, to reduce the radius of the 
cylindrical cavern in the body, it is necessary to increase the external pressure compared with the value 
PI initially reached. 
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